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Abstract. Automated subject classification has been a challenging research issue for many years now, receiving 
particular attention in the past decade due to rapid increase of digital documents. The most frequent approach to 
automated classification is machine learning. It, however, requires training documents and performs well on 
new documents only if these are similar enough to the former. We explore a string-matching algorithm based on 
a controlled vocabulary, which does not require training documents – instead it reuses the intellectual work put 
into creating the controlled vocabulary. Terms from the Engineering Information thesaurus and classification 
scheme were matched against title and abstract of engineering papers from the Compendex database. Simple 
string-matching was enhanced by several methods such as term weighting schemes and cut-offs, exclusion of 
certain terms, and enrichment of the controlled vocabulary with automatically extracted terms. The best results 
are 76% recall when the controlled vocabulary is enriched with new terms, and 79% precision when certain 
terms are excluded. Precision of individual classes is up to 98%. These results are comparable to state-of-the-art 
machine-learning algorithms. 
 

1 Introduction 
Subject classification is organization of objects into topically related groups and establishing 
relationships between them. In automated subject classification (in further text: automated 
classification) human intellectual processes are replaced by, for example, statistical and computational 
linguistics techniques. Automated classification of textual documents has been a challenging research 
issue for several decades. Its relevance is rapidly growing with the advancement of the World Wide 
Web. Due to high costs of human-based subject classification and the ever-increasing number of 
documents, there is a danger that recognized objectives of bibliographic systems (Svenonius 2000, 20-
21) would be left behind; automated means could provide a solution to preserve them (ibid., 30).  

Automated classification of text has many different applications (cf. Sebastiani 2002 and Jain 
et al. 1999); in this paper, the application context is that of information retrieval. In information 
retrieval systems, e.g. library catalogues or indexing and abstracting services, improved precision and 
recall are achieved by controlled vocabularies, such as classification schemes and thesauri. The 
specific aim of the classification algorithm is to provide a hierarchical browsing interface to the 
document collection, through a classification scheme. 

 



 2

In our opinion, one can distinguish between three major approaches to automated 
classification: text categorization, document clustering, and document classification (cf. Golub 
2006a).  

In document clustering, both subject clusters or classes into which documents are classified 
and, to a limited degree, relationships between them are automatically produced. Labeling the clusters 
is a major research problem, with relationships between them, such as those of equivalence, related-
term and hierarchical relationships, being even more difficult to automatically derive (Svenonius 
2000, 168). In addition, “[a]utomatically-derived structures often result in heterogeneous criteria for 
category membership and can be difficult to understand” (Chen & Dumais 2000, 146). Also, clusters’ 
labels and relationships between them change as new documents are added to the collection; unstable 
class names and relationships are in information retrieval systems user-unfriendly, especially when 
used for subject browsing.  

Text categorization (machine learning) is the most widespread approach to automated 
classification of text. Here characteristics of subject classes, into which documents are to be classified, 
are learnt from documents with human-assigned classes. However, human-classified documents are 
often unavailable in many subject areas, for different document types or for different user groups. If 
one would judge by the standard Reuters Corpus Volume 1 collection (RCV1) (Lewis et al. 2004), 
some 8000 training and testing documents would be needed per class. A related problem is that the 
algorithm performs well on new documents only if they are similar enough to the training documents. 
The issue of data collections was also pointed out by Yang (1999) who showed how certain versions 
of one and the same data collection had a strong impact on performance.  

In document classification, matching is conducted between a controlled vocabulary and text 
of documents to be classified. A major advantage of this approach is that it does not require training 
documents. If using a well-developed classification scheme, it will also be suitable for subject 
browsing in information retrieval systems. This would be less the case with automatically-developed 
classes and structures of document clustering or home-grown directories not created in compliance 
with professional principles and standards . Apart from improved information retrieval, another 
motivation to apply controlled vocabularies in automated classification is to re-use the intellectual 
effort that has gone into creating such a controlled vocabulary (cf. Svenonius 1997). 

The importance of controlled vocabularies such as thesauri in automated classification has 
been recognized in recent research. Bang et al. (2006) used a thesaurus to improve performance of a 
k-NN classifier and managed to improve precision by 14%, without degrading recall. Medelyan & 
Witten (2006) showed how information from a subject-specific thesaurus improved performance of 
keyphrase extraction by more than 1,5 times in F1, precision, and recall.  

 
The overall purpose of this experiment is to gain insights into what degree a good controlled 

vocabulary such as “Engineering Information thesaurus and classification scheme” (Ei thesaurus 
1995) (in further text: Ei controlled vocabulary) could be used in automated classification of text, 
using string-matching. Vocabulary control in thesauri is achieved in several ways (Aitchinson et al. 
2000). We believe that the following could be beneficial in the process of automated classification: 

• Terms in thesauri are usually noun phrases, which are content words; 
• Three main types of relationships are displayed in a thesaurus:  

1) equivalence (e.g. synonyms, lexical variants);  
2) hierarchical (e.g. generic, whole-part, instance relationships);  
3) associative (terms that are closely related conceptually but not hierarchically and are 

not members of an equivalence set).  
In automated classification, equivalence terms could allow for discovering concepts and 
not just terms expressing the concepts. Hierarchies could provide additional context for 
determining the correct meaning of a term; and so could associative relationships; 

• When a term has more than one meaning in the thesaurus, each meaning is indicated by 
the addition of scope notes and definitions, providing additional context for automated 
classification. 

In a previous paper (Golub 2006b) it was explored to what degree different types of Ei 
thesaurus terms and Ei classification captions influence performance of automated classification. In 
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short, the algorithm searched for terms from the Ei controlled vocabulary in engineering documents to 
be classified (cf. 2.1). The majority of classes were found when using all the types of terms: preferred 
terms, their synonyms, related, broader, narrower terms and captions, in combination with a stemmer: 
recall was 73%. The remaining 27% of classes were not found because the words in the term list 
designating the classes did not exist in the text of the documents to be classified. No weighting or cut-
offs were applied in the experiment. Apart from showing that all those types of terms should be used 
for a term list in order to achieve best recall, it was also indicated that higher weights could be given 
to preferred terms (from the thesaurus), captions (from the classification scheme) and synonyms (from 
the thesaurus), as those three types of terms yielded highest precision. 

The aim of this experiment is to improve the classification algorithm based on string-
matching between the Ei controlled vocabulary and engineering documents to be classified. We 
especially wanted to do the following: 

1) Achieve precision levels similar to recall achieved in a previous experiment (Golub 
2006b,964) by applying different weights and cut-offs.  

2) Increase levels of recall to more than those achieved in a previous experiment (ibid.) by 
adding new terms extracted using natural language processing methods such as multi-word 
morpho-syntactic analysis and synonym extraction. 
The paper is structured as follows: the next section, (2 Methodology) describes the applied 

string-matching classification algorithm, data collection and the evaluation methodology. The third 
section (3 Improving the string-matching algorithm) describes methods for enhancement of the string-
matching algorithm, including the enrichment with automatically extracted terms. In fourth section, (4 
Results) analyzes and discusses the results. Major conclusions and implications for further research 
are presented in the fifth section (5 Conclusion). 

2 Methodology 

2.1 String-matching algorithm 
This section describes the classification algorithm used in the experiment. It is based on searching for 
terms from the Ei controlled vocabulary, in the field of engineering, in text of documents to be 
classified (also in the field of engineering). The Ei controlled vocabulary consists of two parts: a 
thesaurus of engineering terms, and a hierarchical classification scheme of engineering topics. These 
two controlled vocabulary types have each traditionally had distinct functions: the thesaurus has been 
used to describe a document with as many controlled terms as possible, while the classification 
scheme has been used to group similar documents together to the purpose of shelving them and 
allowing systematic browsing. The aim of the algorithm was to classify documents into classes of the 
Ei classification scheme in order to provide a browsing interface to the document collection. A major 
advantage of Ei is that thesaurus descriptors are mapped to classes of the classification scheme. These 
mappings have been human-derived and are an integral part of the thesaurus. Compared with 
captions1 alone, mapped thesaurus terms provide a rich additional vocabulary for every class: instead 
of having only one term per class (there is only one caption per class), in our experiment there were 
on average 88 terms per class.  

Pre-processing steps of Ei included normalizing upper- and lower-case words. Upper-case 
words were left in upper case in the term list, assuming that they were acronyms; all other words 
containing at least one lower-case letter were converted into lower case. The first major step in 
designing the algorithm was to extract terms from Ei into what we call a term list. It contained class 
captions, thesaurus preferred terms, their synonyms (Term), classes to which the terms and captions 
map or denote (Class), and weight indicating how appropriate the term is for the class to which it 
maps or which it designates (Weight). Geographical names, all mapping to class 95, were excluded on 
the grounds that they are not engineering-specific. The term list was formed as an array of triplets:  

 
Weight: Term (single word, Boolean term or phrase) = Class 

 

                                                 
1 A caption is a class number expressed in words, e.g. in Ei classification scheme “Electric and Electronic 
Instruments” is the caption for class “942.1”. 



 4

Single-word terms were terms consisting of one word. Boolean terms were terms consisting of two or 
more words that must all be present but in any order or in any distance from each other. Boolean 
terms in this form were not explicitly part of Ei, but were created to our purpose. They were 
considered to be those terms which in Ei contained the following strings: “and” (word “and”), “vs.” 
(short for “versus”), “,” (comma), “;” (semi-colon, separating different concepts in class names), “(”, 
“)” (parentheses, indicating the context of a homonym), “:” (colon, indicating a more specific 
description of the previous term in a class name), and “--” (double dash, indicating heading--
subheading relationship). These strings we replaced with “@and” which indicated the Boolean 
relation in the term. All other terms consisting of two or more words were treated as phrases, i.e. 
strings that need to be present in the document in the exact same order as in the term. Ei comprises a 
large portion of composite terms (3474 in the total of 4411 distinct terms in our experiment); as such, 
Ei provides a rich and as such provides a rich and precise vocabulary with the potential to reduce the 
risks of false hits. 

The following are two excerpts from the Ei classification scheme and thesaurus, based on 
which the excerpt from the term list (further below) is created: 
 

From the classification scheme: 
931.2 Physical Properties of Gases, Liquids and Solids 
… 

942.1 Electric and Electronic Instruments 
… 

943.2 Mechanical Variables Measurements 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From the thesaurus: 
TM Amperometric sensors 
UF Sensors--Amperometric measurements 
MC 942.1 
… 

TM Angle measurement 
UF Angular measurement 
UF Mechanical variables measurement--Angles 
BT Spatial variables measurement 
RT Micrometers 
MC 943.2 
… 

TM Anisotropy 
NT Magnetic anisotropy 
MC 931.2 

 

All the different thesaurus terms as well as captions were added to the term list. Despite the fact that 
choosing all types of thesaurus terms might lead to precision losses, we decided to do just that in order 
to achieve maximum recall, as shown in a previous paper (Golub 2006b). In the thesaurus, TM stands 
for the preferred term, UF (“Used For”) for an equivalent term, BT for broader term, RT for related 
term, NT for narrower term; MC represents the main class; sometimes there is also OC, which stands 
for optional class, valid only in certain cases. Main and optional classes are classes from the Ei 
classification scheme that have been human-derived and are an integral part of the thesaurus. Based 
on the above excerpts, the following term list would be created: 
 

1: physical properties of gases @and liquids @and solids = 931.2, 
1: electric @and electronic instruments = 942.1, 
1: mechanical variables measurements = 943.2, 
1: amperometric sensors = 942.1, 
1: sensors @and amperometric measurements = 942.1, 
1: angle measurement = 943.2, 
1: angular measurement = 943.2, 
1: mechanical variables measurement @and angles = 943.2, 
1: spatial variables measurement = 943.2, 
1: micrometers = 943.2, 
1: anisotropy = 931.2, 
1: magnetic anisotropy = 931.2, 

 

The number at the beginning of each triplet is weight estimating the probability that the term of the 
triplet designates the class; in this example it is set to 1 as a baseline, and experiments with different 
weights are discussed later on.  

The algorithm searches for strings from a given term list in the document to be classified and 
if the string (e.g. “magnetic anisotropy” from the above list) is found, the class(es) assigned to that 
string in the term list (“931.2” in our example) are assigned to the document. One class can be 
designated by many terms, and each time a term is found, the corresponding weight (“1” in our 
example) is added to a score for the class. The scores for each class are summed up and classes with 
scores above a certain cut-off (heuristically defined, discussed later on) are selected as the final ones 
for the document being classified.  
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The Ei classification scheme is hierarchical and consists of six main classes divided into 38 
finer classes which are further subdivided into 182 classes. These are subdivided even further, 
resulting in some 800 individual classes in a five-level hierarchy. For this experiment one of the six 
main classes was selected, together with all its subclasses: class 9, “Engineering, General”. The 
reason for choosing this class was that it covers both natural sciences such as physics and 
mathematics, and social sciences fields such as engineering profession and management. The 
literature of the latter tends to contain more polysemic words than the former, and as such presents a 
more complex challenge for automated classification. Within the 9 class, there are 99 subclasses. 
However, for seven of them the number of documents in a database based on which the data 
collection was created (see 2.2 Data Collection) were few, less than 100. Thus those seven classes 
were excluded from the experiment altogether. These were: 9 (Engineering, General), 902 
(Engineering Graphics; Engineering Standards; Patents), 91 (Engineering Management), 914 (Safety 
Engineering), 92 (Engineering Mathematics), 93 (Engineering Physics), and 94 (Instruments and 
Measurement). Of the remaining 92 classes, the distribution at the five different hierarchical levels is 
as follows: at the fifth hierarchical level 11 classes, at the fourth 67, at the third 14, and at the second 
hierarchical level 5. 

2.2 Data collection 
The data collection comprised 35166 bibliographic records2 from the Compendex database (2006). 
The records were selected by simply retrieving the top 100 or more of them upon entering the class 
number. A minimum of 100 records per class were downloaded at several different points in time 
during the years of 2005 and 2006.  

For each record there was at least one of the 92 selected classes that were human-assigned (cf. 
2.1). A subset of this collection was created to include only those records where main class3 was class 
9; this subset contained 19237 documents. 

From each bibliographic record (in further text: document) the following elements were 
extracted: an identification number, title, abstract and human-assigned classes (“Ei classification 
codes”). Thesaurus descriptors (in Compendex called “Ei controlled terms”) were not extracted since 
the purpose of this experiment was to compare automatically assigned classes (and not descriptors) 
against the human-assigned ones. Below is an example of one document:  
 

Identification number:  03337590709  
Title:  The concept of relevance in IR  
Abstract:  This article introduces the concept of relevance as viewed and applied in the context of IR evaluation, by presenting 
an overview of the multidimensional and dynamic nature of the concept. The literature on relevance reveals how the relevance 
concept, especially in regard to the multidimensionality of relevance, is many faceted, and does not just refer to the various 
relevance criteria users may apply in the process of judging relevance of retrieved information objects. From our point of view, 
the multidimensionality of relevance explains why some will argue that no consensus has been reached on the relevance 
concept. Thus, the objective of this article is to present an overview of the many different views and ways by which the concept 
of relevance is used - leading to a consistent and compatible understanding of the concept. In addition, special attention is paid 
to the type of situational relevance. Many researchers perceive situational relevance as the most realistic type of user 
relevance, and therefore situational relevance is discussed with reference to its potential dynamic nature, and as a requirement 
for interactive information retrieval (IIR) evaluation.   
Ei classification codes:  903.3 Information Retrieval & Use, 723.5 Computer Applications, 921 Applied Mathematics 
 

Automated classification was based on title and abstract, and automatically assigned classes were 
compared against human-assigned ones (Ei classification codes in the example). On average, 2.2 
classes per document were human-assigned, ranging from 10 to 1.  

2.3 Evaluation methodology 

2.3.1 Evaluation Challenge  
According to standard “Documentation – Methods for examining documents, determining their 
subjects, and selecting index terms” (International Organization for Standardization 1985: 5963-
                                                 
2 Compendex being a commercial database, the data collection cannot be made available to others, but the 
authors are willing to provide documents’ identification numbers on request. 
3  The first one listed in the “Ei classification codes” field of the record. 
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1985), human-based subject indexing is a process involving three steps: 1) determining subject 
content of a document, 2) conceptual analysis to decide which aspects of the content should be 
represented, and 3) translation of those concepts or aspects into a controlled vocabulary. These steps, 
in particular the second one, are based on a specific library’s policy in respect to its document 
collections and user groups. Thus, when evaluating automatically assigned classes against the human-
assigned ones, it is important to know the human-based indexing policies. Unfortunately, we were 
unable to obtain indexing policies applied in the Compendex database. What we could derive from the 
data collection was the number of human-assigned classes per document, which were used in 
evaluation. However, without a thorough qualitative analysis of automatically assigned classes one 
cannot be sure whether, for example, the classes assigned by the algorithm, but not human-assigned, 
are actually wrong, or if they were left out by mistake or because of the indexing policy. A further 
issue is that we did not know whether the articles had been human-classified based on their full-text 
or/and abstracts; we had, however, only abstracts.  

Another problem to consider when evaluating automated classification is the fact that certain 
subjects are erroneously assigned. When indexing, humans make errors such as those related to 
exhaustivity policy (too many or too few terms become assigned), specificity of indexing (which 
usually means that humans do not assign the most specific term), they may omit important terms, or 
assign an obviously incorrect term (Lancaster 2003, 86-87). In addition, it has been reported that 
different people, whether users or professional subject indexers, would assign different subject terms 
or classes to the same document. Studies on inter- and intra-indexer consistency report generally low 
indexer consistency (Olson & Boll 2001, 99-101). Markey (1984) reviewed 57 indexer consistency 
studies and reported that consistency levels range from 4% to 84%, with only 18 studies showing over 
50% consistency. There are two main factors that seem to affect it:  

1) Higher exhaustivity and specificity of subject indexing both lead to lower consistency, i.e. 
indexers choose the same first term for the major subject of the document, but the consistency 
decreases as they choose more classes or terms;  

2) The bigger the vocabulary, or, the more choices the indexers have, the less likely they will 
choose the same classes or terms (Olson & Boll 2001, 99-101).  

Both of these two factors were present in our experiment:  
1) High exhaustivity: on average, 2.2 classes per document had been human-assigned, ranging 

from 10 to 1. 
2) Ei controlled vocabulary is rather big (we chose 92 classes) and deep (five hierarchical 

levels), allowing many different choices.  
Today evaluation in automated classification experiments is mostly conducted under 

controlled conditions, ignoring the above-discussed issues. As Sebastiani (2002, 32) puts it, “…the 
evaluation of document classifiers is typically conducted experimentally, rather than analytically. The 
reason is that… we would need a formal specification of the problem that the system is trying to solve 
(e.g. with respect to what correctness and completeness are defined), and the central notion… that of 
membership of a document in a category is, due to its subjective character, inherently 
nonformalizable.” Because of the fact that methodology for such experiments has yet to be developed, 
as well as limited resources, we followed the common approach to evaluation and started from the 
assumption that human-assigned classes in the data collection were correct, and compared 
automatically assigned classes against them.  

2.3.2 Evaluation measures 
The subset of the Ei controlled vocabulary we used comprised 92 classes that are all topically related 
to each other. The topical relatedness is expressed in numbers representing the classes: the more 
initial digits any two classes have in common, the more related they are. For example, 933.1.2 for 
“Crystal Growth” is closely related to 933.1 for “Crystalline Solids”, both of which belong to 933 for 
“Solid State Physics”, and finally to 93 for “Engineering Physics”. Each digit represents one 
hierarchical level: class 933.1.2 is at the fifth hierarchical level, 933.1 at the fourth etc. Thus, 
comparing two classes at only first few digits (later referred to as partial matching) instead of all the 
five also makes sense. Still, unless specifically noted, the evaluation in this experiment was conducted 
based on all the five different levels (later referred to as complete matching), i.e. an automatically 
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assigned class was considered correct only if all its digits were the same as a human-assigned class for 
the same document. 

Evaluation measures used were the standard microaveraged and macroaveraged precision, 
recall and F1 (Sebastiani 2002, 40-41), for both complete and partial matching: 

 

Precision = correctly automatically assigned classes / all automatically assigned classes 
 

Recall = correctly automatically assigned classes / all human-assigned classes 
 

F1 = 2*Precision*Recall / (Precision + Recall)  
 

In macroaveraging the results are first calculated for each class, and then summed and divided by the 
number of classes. In microaveraging the results for each part of every equation are summed up first 
(e.g. all correctly automatically assigned classes are added together, all automatically assigned classes 
are added together), and then the “aggregated” values are used in one equation. Equations for 
macroaveraged and microaveraged precision are given below:  

 

Precisionmacroaveraged = sum of precision values for each class / number of all classes  
 
Precisionmicroaveraged = sum of correct automated assignments for each class /  
                                  sum of all automated assignments for each class 
 

 

In microaveraging more value is given to classes that have a lot of instances of automatically assigned 
classes and the majority of them are correct, while in macroaveraging the same weight is given to 
each class, no matter if there are many or few automatically assigned instances of it. The differences 
between macroaveraged and microaveraged values can be large, but whether one is better than the 
other has not been agreed upon (Sebastiani 2002, 41-42). Thus, in this experiment, it is the mean 
macroaveraged and microaveraged F1 that is mostly used.  

In order to examine different aspects of the automated classification performance, several 
other factors were also taken into consideration:  

• Whether the (human-assigned) main class is found; 
• The number of documents that got automatically assigned at least one class; 
• Whether the class with highest score was the same as the human-assigned main class; 
• The distribution of automatically versus human-assigned classes; and,  
• The average number of classes assigned to each document. There were 2.2 human-

assigned classes per document, and our aim was to achieve similar. In the context of 
hierarchical browsing based on a classification scheme, having too many classes 
assigned to a document would place one document to too many different places, 
which would create the opposite effect of the original purpose of a classification 
scheme, that of grouping similar documents together. 

3 Improving the algorithm 
The major aim of the experiment was to improve the algorithm that was previously experimented with 
in Golub 2006b, where highest (microaveraged) recall was 73% when all types of terms were 
included in the term list. In that experiment neither weights nor cut-offs were experimented with, so 
all the classes that were found for a document were assigned to it. Here we wanted to achieve as high 
as possible precision levels by use of term weighting and class cut-offs. In order to also allow for 
better recall, the basic term list was enriched with new terms extracted from documents in the 
Compendex database, using multi-word morpho-syntactic analysis and synonym acquisition.  

3.1 Term weights 
The aim of this part of the experiment was to achieve as high as possible precision levels by use of 
weighting and cut-offs. As shown in Golub 2006b, all types of terms need to be used in the term list 
for maximum recall. Thus, all the different types of terms and their mappings to classes were merged 
into the final term list. This resulted in a number of duplicate cases which were dealt with in the 
following manner: 
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• If one term mapping to the same class was a caption, a preferred term, and a synonym 
at the same time, the highest preference was, based on their performance (see Table 
4), given to captions, followed by preferred terms, followed by synonyms, while 
others were removed from the list; 

• If one term mapping to both optional class (OC) and main class (MC) was a caption, 
a preferred term, and a synonym at the same time, the highest preference was, based 
on their performance (see Table 2), given to captions, followed by preferred terms, 
followed by synonyms, while others were removed from the list; 

• If one thesaurus term of the same type mapped to both optional class (OC) and main 
class (MC), the one that mapped to the optional class was removed (based on their 
performance, see Table 2). 

The final term list consisted of 8099 terms, out of which 92 were captions (all mapped to main class 
(MC)), 668 were broader terms, 729 narrower, 1653 preferred, 3224 related, and 1733 were synonym 
terms. This big number of terms that have been human-mapped to classes indicates potential 
usefulness of such a controlled vocabulary in a string-matching algorithm for automated 
classification. 

In order to systematically vary different parameters, the following 14 weighting schemes 
evolved:  

 

1) w1: All terms in the term list were given the same weight, 1. This term list served as a baseline.  
 

2) w134: Different term types were given different weights: single-word terms 1, phrases 3, and 
Boolean terms 4.  
  These weights were heuristically derived in a separate experiment (Table 1). Three different 
term lists were created, each containing only single-word terms, phrases or Boolean terms. 
Weight 1 was assigned to all of them. The documents were classified using these three terms lists 
and their performance was compared for precision. 

Table 1. Single, phrase and Boolean term lists and their performance as a basis for weights. 
 

 
 
 
 

Avg. precision (%) is mean microaveraged and macroaveraged precision. Derived weights were 
based on dividing precision values (Avg. precision) by the lowest precision value (in this case 8).  

 

3) w12: Terms mapping to a main class (MC) were given weight 2, and those mapping to an optional 
class (OC) were given weight 1.  

These weights were heuristically derived in a separate experiment (Table 2). Two different 
term lists were created, one containing only those terms that map to a main class, and another one 
containing only those terms that map to an optional class. Weight 1 was assigned to all of them. 
The documents were classified using these two terms lists and their performance was compared 
for precision. 

Table 2. Main code and optional code term lists and their performance as a basis for weights. 
 

 
 
 

Avg. precision (%) is mean microaveraged and macroaveraged precision. Derived weights were 
based on dividing precision values (Avg. precision) by the lowest precision value (in this case 6). 

 

4) w134_12: This list was a combination of the two preceding lists. Weights for term type 1, 3, and 4 
for single, phrase or Boolean term were multiplied by the weight for the type of class to which the 
term mapped – 1 or 2 for optional or main class. 

 

Single Phrase Boolean

Avg. precision (%) 8 26 33
Derived weight 1 3 4

MC OC
Avg. precision (%) 13 6

Derived weight 2 1
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5) wOrig :  As used in the original term weighting scheme when the string-matching algorithm based 
on Ei was first applied (Koch & Ardö 2000). These weights were intuitively derived. They 
combined types of terms depending if it were a single-word term, Boolean or phrase, and whether 
the assigned class was main (MC) or optional (OC).  

Table 3. Weights in the original algorithm. 
 

 

 
 
6) w1234: With weights for different term relationships and captions as experimented with in Golub 

2006b (captions are from the classification scheme, all others are thesaurus terms). 

Table 4. Different types of thesaurus terms captions and their performance as a basis for weights. 

 
 

 
 
7) w134_1234: This list was a combination of two previous lists, w134 and w1234. Weights for term 

type 1, 3, and 4 for single, phrase or Boolean term were multiplied by the weight for the type of 
term relationships as given in Table 4. 

 

8) w134_12_1234: This list was a combination of two previous lists, w134_12 and w1234. Weights 
for term type 1, 3, and 4 for single, phrase or Boolean term were multiplied by the weight for the 
type of class to which the term mapped – 1 or 2 for optional or main class, and by the weight for 
the type of term relationships as given in Table 4. 

 

9) wTf10: In this list weights were based on the number of words the term consisted of, and of the 
number of times each of its words occurred in other terms (cf. tf-idf, term frequency – inverse 
document frequency, Salton & McGill 1983, e.g. 63,205). If f were the frequency with which a 
word w from the term t occurred in other terms, term t consisting of n words, then the weight 
weight of that term was calculated as follows: 
 

weightt =  log(n) · ( 1/fw1 + 1/fw2 +…+ 1/fwn ) 
 

Log was applied in order to reduce the impact of parameter n, i.e. to avoid getting overly high 
weights for terms consisting of several sparse words. In order to get integers as weights, the 
weights were multiplied by 10, rounded and increased by 1 to avoid zeros.  
    

10) wTf10Boolean: As in wTf10, with all the phrases modified into Boolean terms. This list was 
created in order to study the influence of phrases and Boolean terms on precision and recall. 

 

11) wTf10Phrases: As in wTf10, with all the Boolean terms modified into phrases. This list was 
created in order to study the influence of phrases and Boolean terms on precision and recall. 

 

12) wTf10_12: As in wTf10, with those weights multiplied by the weight for the type of class to 
which the term maps – 1 or 2 for optional or main class. The multiplication was done before the 
rounding. 

 

13) wTf10_1234: As in wTf10, with those weights multiplied by the weight for the type of 
relationship (Table 4). The multiplication was done before the rounding. 

 

14) wTf10_12_1234: As in wTf10_12, with those weights multiplied by the weight for the type of 
relationship (Table 4). The multiplication was done before the rounding. 

3.1.1 Stop-word list and stemming 
Although the terms and captions in the Ei controlled vocabulary are usually noun phrases which are 
good content words, they can also contain words which are frequently used in many contexts and as 
such are not very indicative of any document’s topicality (e.g. the word “general” in the Ei class 
caption “Engineering, General”). Thus, a stop-word list was used. It contained 429 such words, and 
was taken from Onix text retrieval toolkit (2006). For stemming, the Porter’s algorithm (Porter 1980) 

 Phrase  Boolean  Single 
OC 4 2 1
MC 8 3 2

Broader Captions Narrower Preferred Related Synonyms
Avg. precision (%) 10 43 25 39 10 35

Derived weight 1 4 2 4 1 3
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was used. The stop-word list was applied to the term lists, and stemming to the term lists as well as 
documents.  

3.2 Cut-offs 
In a previous experiment (Golub 2006b) cut-offs were not used – instead, all the classes that were 
found for a document were assigned to it. In the context of hierarchical browsing based on a 
classification scheme, having too many classes assigned to a document would place one document to 
many different places, which would create the opposite effect of the original purpose of a 
classification scheme (grouping similar documents together). In the data collection, there were 2.2 
human-assigned classes per document, and the aim of automated classification was to achieve similar. 
The effect of several different cut-offs was investigated:  

1) All automatically derived classes are assigned as final ones (no cut-off). 
2) In order to assign a certain class as final, the score of that class had to have a minimum 

percentage of the sum of all the classes’ scores. Different values for the minimum percentage 
were tested: 1, 5, 10, 15 and 20, as well as some others (see section 4 Results). 

3) The second type of cut-off in combination with the rule that if there were no class with the 
required score, the one with the highest score would be assigned. 

4) In order to follow the subject classification principle of always assigning the most specific 
class possible, the principle of score propagation was introduced. The principle was 
implemented so that the scores for classes at deeper hierarchical levels were a sum of their 
own score together with scores of classes at upper hierarchical levels if such were assigned.  

3.3 Enriching the term list with new terms 
In the previous experiment (Golub 2006b), highest achieved recall was 73% (microaveraged), when 
all types of terms were included in the term list. In order to further improve recall, the basic term list 
was enriched with new terms. These terms were extracted from bibliographic records of the 
Compendex database, using multi-word morpho-syntactic analysis and synonym acquisition, based on 
the existing preferred and synonymous terms (as they gave best precision results).  

Multi-word morpho-syntactic analysis was conducted using a parser FASTER (Jacquemin 
1996) which analyses raw technical texts and, based on built-in meta-rules, detects morpho-syntactic 
variants. The parser exploits morphological (derivational and inflectional) information as given by the 
database CELEX (Baayen et al. 1995). Morphological analysis was used to identify derivational 
variants, such as: 

 

effect of gravity: gravitational effect 
architectural design: design of the proposed architecture 
supersonic flow:  subsonic flow  
structural analysis: analysis of the structure 
 

Syntactical analysis was used to: 
a) insert word inside a term, such as: 

 

flow measurement: flow discharge measurements 
distribution of good: distribution of the finished goods 
construction equipment: construction related equipment  
intelligent distributed control: intelligent control 
 

b) permute components of a term, such as: 
 

control of the inventory: inventory control  
flow control: control of flow 
development of a flexible software: software development 
 

c) add a coordinated component to a term, such as:  
 

project schedule and management: project management  
control system: control and navigation system 
 

Synonyms were acquired through a rule-based system SynoTerm (Hamon & Nazarenko 
2001) which infers synonymy relations between complex terms by employing semantic information 
extracted from lexical resources. First the documents were preprocessed and tagged with part-of-
speech information and lemmatized. Then terms were identified through the YaTeA term extractor 
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(Aubin & Hamon 2006). The semantic information provided by the database WordNet (Fellbaum 
1998; WordNet Search 2007) was used as a bootstrap to acquire synonym terms of the basic terms. 
The synonymy of the complex candidate terms was assumed to be compositional, i.e. two terms were 
considered synonymous if their components were identical or synonymous (e.g. building components: 
construction components, building components: construction elements). 

Although verification by a subject expert is desirable for all automatically derived terms, due 
to limited resources only the extracted synonyms were verified. Checking the synonyms is also most 
important since computing those leads to a bigger semantic shift than morphological and syntactical 
operations do. The verification was conducted by a subject expert, a fifth-year student of engineering 
physics. Suggested synonym terms were displayed in the user interface of SynoTerm. The verification 
was not strict: derived terms were kept if they were semantically related to the basic term. Thus, 
hyperonym (generic/specific) or meronym (part/whole) terms were also accepted as synonyms. The 
expert spent 10 hours validating the derived terms.  Of the 292 automatically acquired synonyms, 168 
(57,5%) were validated and used in the experiment.  

4 Results 

4.1 Weights and cut-offs 
Based on each of the 14 term lists, the classification algorithm was run on the data collection of 35166 
documents (see 2.2). As described earlier (2.3.2), several aspects were evaluated and different 
evaluation measures were used; thus, for each term list, the following types of results were obtained:  

1) min 1: if no classes were assigned because their final scores were below the pre-defined cut-
off value (described in 3.2), the class with the highest score was assigned;  

2) cut-off:  the applied cut-off value; 
3) min 1 correct: number of documents that were assigned at least one correct class; 
4) min 1 auto: number of documents that were assigned at least one class; 
5) avg auto/doc: average number of classes that were assigned per document, based on 

documents that were assigned at least one class; 
6) macroa P: macroaveraged precision; 
7) macroa R: macroaveraged recall; 
8) macroa F1: macroaveraged F1; 
9) microa P: microaveraged precision; 
10) microa R: microaveraged recall; 
11) microa F1: microaveraged F1; 
12) mean F1s: arithmetic mean of macroaveraged and microaveraged F1 values. 

 
Table 5 shows results for list w134_12_1234 which has combined weights for term type 

(single, phrase or Boolean), type of class, and type of term relationships. In order to provide an 
example of how results for every other term list were analyzed, we discuss results for this list in 
detail.  

Best recall is achieved when no cut-off is applied, 0.54, but in that case on average 17 classes 
are assigned per document, which is too many in comparison to 2.2 that are human-assigned. This 
setting is appropriate in applications such as focused crawling where documents are ranked based on 
weights. When the most appropriate number of classes for our purpose is assigned (2.63), recall is 
0.22. Best precision is gained when cut-off value is highest (20): 0.37 macroaveraged, 0.28 
microaveraged. In that setting the average number of classes assigned per document is 1.5. Best mean 
macroaveraged and microaveraged F1 is 0.22, when cut-offs are 10 or 15.  

Best precision results are gained when cut-off is highest, best recall when there is no cut-off. 
More than twice as many documents are assigned correct classes when no cut-off is used. All these 
results suggest that weights are not very appropriate. Still, when looking at the F1 values, in 
comparison to the baseline (first column), an improvement of six percent is achieved when using the 
w134_12_1234 term list. 

Table 5. Results for term list w134_12_1234. 
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The same experiment was run on all the other term lists. When looking at mean F1 values, the 

differences between the term lists are not larger than four percent. Performance of the different lists 
measured in precision and recall is also similar. Three lists that perform best in terms of mean F1 are 
w1234, w134_1234 and w134_12_1234 – all of them based on weights for different term 
relationships. The biggest number of correct classes is found with the wTf10Boolean list in which all 
phrases were converted into Boolean terms. 

When using cut-offs, two sets of experiments were conducted: one with assigning at least the 
class with highest score, and the other following the threshold calculation only. Because the former 
results in more documents with assigned correct classes, in further experiments the rule to assign at 
least the class with highest score is applied. 

4.1.1 Stop-words removal and stemming  
Next, the influence of stop-words removal and stemming was tested (as described in 3.1.1). For this 
experiment three lists that performed best in the previous one were chosen: w1234, w134_1234 and 
w134_12_1234. Every list was run against stop-words removed, stemming, and both the stop-words 
removed and stemming, each in combination with different cut-off values: 5, 10 and 15.  

Improvements when using either stemming or stop-words removal or both are achieved in 
majority of cases up to two percent. There is also a slight increase in the number of correctly found 
classes without finding more incorrect classes. The differences between the three term lists measured 
in mean F1 are minor – one or two percent. The best term list is w134_12_1234 used in combination 
with stemming and stop-words removal and cut-off 10 – best mean F1 is 0.24. For this list more cut-
offs were experimented with for better results; the value of 9 proved to perform best but better only on 
a third decimal digit than that of 10.  

4.1.2 Individual classes, partial matching, distribution of classes 
We further wanted to investigate performance at the level of individual classes, partial matching as 
well as how automatically assigned classes are distributed in comparison to human-assigned ones. We 
used the best-performing w134_12_1234 term list and setting (applying stemming and stop-words 
removal, cut-off 9). 

It was shown that certain classes perform much better than the average. Performance of 
different classes varies quite a lot. For example, top three performing classes as measured in precision 
are different from top three classes for recall or F1:  

• Top three in precision: 
− Cellular Manufacturing (913.4.3), precision 0.98;  
− Electronic Structure of Solids (933.3), precision 0.97; and,  
− Information Retrieval and Use (903.3), precision 0.82.  

• Top three in recall: 
− Amorphous Solids (933.2), recall 0.61; 
− Crystal Growth (933.1.2), recall 0.52; and, 
− Manufacturing (913.4), recall 0.50. 

min 1

cut-off 0 1 5 10 15 20 1 5 10 15 20

min 1 correct 24036 21403 17403 14339 12320 10278 21403 17403 14425 12774 11606

min 1 auto 34053 34053 34050 33270 30433 26587 34053 34053 34053 34053 34053

avg auto/doc 16.65 9.77 5.02 2.69 1.91 1.47 9.46 4.86 2.55 1.65 1.11

macroa P 0.11 0.14 0.18 0.25 0.32 0.37 0.14 0.18 0.25 0.31 0.35

macroa R 0.54 0.42 0.29 0.21 0.17 0.14 0.42 0.29 0.22 0.18 0.15

macroa F1 0.19 0.21 0.22 0.23 0.22 0.20 0.21 0.22 0.23 0.23 0.21

microa P 0.07 0.10 0.13 0.19 0.24 0.28 0.10 0.13 0.19 0.23 0.27

microa R 0.54 0.43 0.30 0.22 0.18 0.14 0.43 0.30 0.22 0.18 0.16

microa F1 0.13 0.16 0.19 0.20 0.20 0.19 0.16 0.18 0.20 0.21 0.20

mean F1s 0.16 0.19 0.20 0.22 0.21 0.19 0.19 0.20 0.22 0.22 0.21

no yes
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• Top three in F1:  
− Crystal Growth (933.1.2), F1 0.45; 
− Amorphous Solids (933.2), F1 0.44; and, 
− Optical Variables Measurement (941.1), F1 0.40.  

 
As expected, the algorithm performs better when evaluation is based on partial matching 

between automatically and human-assigned classes. As seen from Table 6, at the second hierarchical 
level F1 is up to 0.66 and at third 0.59. At the second hierarchical level the best F1 is achieved by 
classes “Engineering mathematics” (represented by number 92) and “General engineering” (90), both 
of which have by far the smallest number of terms designating them (terms), while other three classes 
have many more terms and similar performance measured in mean F1. At the third hierarchical level, 
the class that performs best of all is 921 “Applied Mathematics”, while the worst one is 943 
“Mechanical and Miscellaneous Instruments”. In conclusion, for the 14 classes at top three 
hierarchical levels mean F1 is almost twice as good as for the complete matching, which implies that 
our classification approach would suit better those information systems in which fewer hierarchical 
levels are needed, like the Intute subject gateway on engineering (Intute: Engineering 2007). 

Table 6.  Results for partial matching at the second and third hierarchical levels, and number of terms 
per each class. 

F1
terms

901 902 903 911 912 913 914 921 922 931 932 933 941 942 943 944
F1 0.35 0.27 0.53 0.32 0.36 0.26 0.29 0.59 0.33 0.44 0.33 0.48 0.28 0.36 0.2 0.44

terms 275 241 163 237 596 393 696 628 220 1648 801 453 422 373 604 349

Instruments
90 91 92 93 94

General Management Maths Physics

0.49
679 1922 848 2902 1748
0.65 0.5 0.66 0.51

 
 
The variations in performance between individual classes for both complete and partial 

matching are quite big, but at this stage it is difficult to say why. Further research is needed to explore 
what the factors contributing to performance are.   

 
Using the same best setting achieved so far, the algorithm was also evaluated for distribution 

of automatically assigned classes in comparison to that of the human-assigned ones. The comparison 
was based on how often two classes get assigned together when using the algorithm in comparison to 
when they get human-assigned. Figure 1 shows the frequency distribution of assigned class pairs. The 
x-coordinate presents human-assigned class pairs ordered by descending frequency. One point 
represents one class pair: e.g. the pair of classes 912.2 and 903 occurs most frequently in human-
based classification (48 times, as marked on the y-coordinate) and is represented by point 1 on the x-
coordinate; point 500 on the x-coordinate represents the 913.5 and 911 pair that occurs 3 times, as 
marked on the y-coordinate. Thus, the smoothest line (Human-assigned) represents the human-
assigned classes. The minimum of 2538 pairs of classes that both the algorithm and humans have 
produced are shown.  

A correlation of 0.38 exists between the human-assigned classes and automatically assigned 
classes (Automated). However, for the 100 most frequent pairs, the correlation drops to 0.21. In the 
top 10 most frequent pairs of classes, there is no overlap at all. In conclusion, the distribution of 
human-assigned and automatically assigned classes is more correlated when looking at all pairs of 
classes occurring together, but less so for more frequently occurring pairs. 
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Figure 1.  Frequency distribution of assigned pairs of classes (2538 pairs). 

 

4.1.3 Score propagation and main classes 
A relevant subject classification principle is to always assign the most specific class available. This 
principle provided us with a basis for the so-called score propagation, in which scores of classes at 
narrower (more specific) hierarchical levels were increased by scores assigned to their broader classes 
(later referred to as “propagated down”). In another run, this was slightly varied, so that the broader 
classes from which scores were propagated to their narrower classes were removed (“propagated 
down, broader removed”). 
 These types of score propagation were tested on the best performing term list and setting 
(w134_12_1234 with stemming and stop-words removal). In complete matching, “propagated down” 
performs best. However, it is slightly worse than when not using score propagation at all. In partial 
matching, both “propagated down” and “propagated down, broader removed” perform slightly better 
than the original on the first two or three hierarchical levels, and slightly worse on the fourth and fifth 
ones. These not-so-good results with score propagation can be partially explained by the fact that the 
term list contained both broader and narrower terms, which was done in order to achieve best recall 
(Golub 2006b). 

 
We further analyzed the degree to which the one most important concept of every document 

is found by the algorithm. To this purpose, a subset of (19153) documents was used which had the 
human-assigned main class in class 9 (there is one main class per document). In complete matching 
78% of main classes are found when no cut-offs are applied. When cut-offs are applied, 22% of main 
classes are found. In partial matching, more main classes are found at the second and third 
hierarchical levels when using both types of score propagation, up to 59% and 38% respectively. 
Thus, score propagation could be used in services for which fewer hierarchical levels are needed (e.g. 
Intute 2007).  

4.2 Enhancing the term list with new terms 
In the previous experiment (Golub 2006b), highest achieved recall was 73% (microaveraged), when 
all types of terms were included in the term list. In order to further improve recall, the basic term list 
was enriched with new terms. These terms were extracted from bibliographic records of the 
Compendex database, using multi-word morpho-syntactic analysis and synonym acquisition, based on 
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the existing preferred and synonymous terms (as they gave best precision results). The number of 
terms added to the term list was as follows: 

1) Based on multi-word morpho-syntactic analysis: 
• derivation: 705, out of which 93 adjective to noun, 78 noun to adjective, and 534 noun to 

verb; 
• permutation: 1373; 
• coordination: 483; 
• insertion: 742; and 
• preposition change: 69. 

2) Based on semantic variation (synonymy): 292 automatically extracted, out of which 168 were 
verified as correct by the subject expert.  

  In order to examine the influence of different types of extracted terms, nine different term 
lists were created and the classification was based on each of them. It was shown that the number of 
terms is not proportional to performance, e.g. permutation-based extraction comprises 1373 terms, 
and, when stemming is applied, has performance as measured in mean F1 of 0.02, whereas 
coordination comprises 403 terms, with performance of 0.07. These two cases can be explained by the 
fact that permutation also implies variation based on insertion and preposition change (e.g. 
“engineering for commercial window systems:” “system engineering”) which leads to bigger semantic 
shift than the identification of term variant based on the coordination. By combining all the extracted 
terms into one term list, the mean F1 is 0.14 when stemming is applied, and microaveraged recall is 
0.11, which would imply that enriching the original Ei-based term list with these newly extracted 
terms should improve recall. In comparison to results gained in Golub 2006b, where microaveraged 
recall with stemming is 0.73, here the best recall, also microaveraged and with stemming, is 0.76.  
  The next step was to assign appropriate weights to the newly extracted terms (Table 7). We 
used the w134_12_1234 term list, earlier shown to perform best. The result as measured in mean F1 is 
the same as in the original, 0.24 (cut-off 10, stemming applied but not stop-word removal). The 
difference is that recall and the number of correctly assigned classes increases by 3%, but precision 
decreases. Thus, depending on the final application, terms extracted in this way could be added to the 
term list or not. 

Table 7.  Performance of the w1 term list enriched with all automatically extracted terms. 

 
 

4.3 Terms analysis and shortened term lists 
In the original term list there were 4411 distinct terms. In the data collection, 53% of them were 
found. The average length of the terms found was between one and two words, while the longer ones 
were less frequently found.  

Of the terms found in the collection, based on 16% of them correct classes were always found, 
while based on 43% of them incorrect classes were always found. For a sample of documents 
containing terms that were shown to always yield incorrect results, we had a male subject expert 

stemming no yes no yes

stop-words out no no yes yes

min 1 correct 24479 29639 26039 30466

min 1 auto 34086 34966 34425 34987

avg auto/doc 16.79 28.61 18.06 29.68

macroa P 0.11 0.09 0.11 0.09

macroa R 0.54 0.71 0.55 0.72

macroa F1 0.19 0.16 0.18 0.15

microa P 0.07 0.06 0.07 0.06

microa R 0.55 0.73 0.59 0.76

macroa F1 0.13 0.11 0.13 0.10

mean F1 0.16 0.13 0.16 0.13

all combined
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confirm whether the documents were in the wrong class according to his opinion. For 10 always-
incorrect terms with most frequent occurrences, the subject expert looked at 30 randomly selected 
abstracts containing those terms. Based on his judgments, it was shown that 24 out of those 30 
documents were indeed incorrectly classified, but there were also 6 which he deemed to be correct. 
This is another indication of how problematic it is to evaluate subject classification in general, and 
automated subject classification in particular. Perhaps one way would be to have a number of subject 
experts agree on all the possible subjects and classes for every document in a test collection for 
automated classification; another way could be to evaluate automated classification in context, by 
end-users. 

Based on the term analysis, three new term lists were extracted from the original one, and 
tested for performance: 
1) Containing only those terms that found classes which were always correct (1308 terms). When 

cut-off is between 5 and 10, macroaveraged precision reaches 0.89, and microaveraged 0.99, 
when neither stemming nor stop-words removal are applied. Stemming does not really improve 
general performance because recall increases only little, by 0.03, while precision decreases by 0.2. 
However, when using only those 1308 terms, only 5% of documents are classified. The best mean 
F1, 0.15, is achieved when stemming and the stop-word removal are used.  

2) Containing those terms that found classes which were correct in more instances than they were 
incorrect (1924 terms). This list yields best mean F1, 0.38. This value is achieved when stemming 
is used but no stop-words are removed. There are 65% of documents that are classified, with the 
average number of classes 1.7. When stemming is not used, precision levels are 0.75 for 
microaveraged, and 0.79 for macroaveraged.   

3) Containing all terms excluding those that found classes which were always incorrect (4751 
terms). The mean F1 is 0.25, when cut-off is 10 and both stop-words removal and stemming are 
used. The slight improvement in comparison to the original list is due to increase in precision. 

5 Conclusion 
In comparison to previous results (Golub 2006b) the experiment showed that the string-matching 
classification algorithm could be enhanced in the following ways:  

1) Weights: adding different weights to the term list based on whether a term is single, phrase or 
Boolean, which type of class it maps to, and type of term relationship, improves precision, 
mean F1, and relevance order of assigned classes, the latter being important for browsing; 

2) Cut-offs: selecting as final classes those above a certain cut-off level improves precision and 
F1. Assigning at least the class with highest score improves the number of documents that are 
classified, and the number of documents that are correctly classified; 

3) Converting all phrases into Boolean terms increases the number of correct classes; 
4) Stemming, stop-words removal or the two in combination improve precision and recall; 
5) Score propagation improves finding the main class at the top three and two hierarchical 

levels; 
6) Enhancing the term list with new terms based on morpho-syntactic analysis and synonyms 

acquisition improves recall; 
7) Excluding terms that in most cases gave wrong classes yields best performance in terms of 

F1, where the improvement is due to higher precision levels; and 
8) Best precision levels are achieved when only those terms that always gave correct classes are 

used. 
The best achieved recall is 76%, when the basic term list is enriched with new terms, and precision 
79%, when only those terms previously shown to yield correct classes in the majority of documents 
are used. Performance of individual classes, measured in precision, is up to 98%. At third and second 
hierarchical levels mean F1 reaches up to 60%.  

These results are comparable to machine-learning algorithms (cf. Sebastiani 2002), which are 
considered to be the best ones but require training documents and are collection-dependent. Another 
benefit of classifying documents into classes of well-developed classification schemes is that they are 
suitable for subject browsing, unlike automatically-developed controlled vocabularies or home-grown 
directories often used in document clustering and text categorization (cf. Golub 2006a). 
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The experiment has also shown that different versions of the algorithm could be implemented 
so that it best suits the application of the automatically classified document collection. If the 
application requires high recall, such as for example in focused crawling, cut-offs would not be used. 
Or, if one provides directory-style browsing interface to a collection of automatically classified Web 
pages, Web pages could be ranked by relevance based on weights. In such a directory, one might want 
to limit the number of Web pages per class, e.g. assign only the class with highest probability that it is 
correct, as it is done in the “Thunderstone’s web site catalog” (About the Thunderstone web site 
catalog 2007).  

Most appropriate weights have still to be discovered. Future research should also involve 
testing automated classification in the context of an application and by end users, because of the 
problem of aboutness. The applicability of the string-matching approach mostly depends on the 
controlled vocabulary itself. While Ei proved to be suitable, which characteristics of controlled 
vocabularies are beneficial for automated classification needs to be further studied. 
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