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Abstract. Automated subject classification has been a chgilhgnresearch issue for many years now, receiving
particular attention in the past decade due tadraqmrease of digital documents. The most freqagptroach to
automated classification is machine learning. ¢twaver, requires training documents and performé ove
new documents only if these are similar enouglméoformer. We explore a string-matching algorithasdd on

a controlled vocabulary, which does not requirening documents — instead it reuses the intelléctoak put
into creating the controlled vocabulary. Terms frtme Engineering Information thesaurus and classifin
scheme were matched against title and abstrachgiheering papers from the Compendex database.l&imp
string-matching was enhanced by several methods asidcerm weighting schemes and cut-offs, exclusion
certain terms, and enrichment of the controlledabatary with automatically extracted terms. Thetlbesults
are 76% recall when the controlled vocabulary iscked with new terms, and 79% precision when @erta
terms are excluded. Precision of individual classesp to 98%. These results are comparable te-sfathe-art
machine-learning algorithms.

1 Introduction

Subject classification is organization of objectgoi topically related groups and establishing
relationships between them. In automated subjeassdication (in further text: automated
classification) human intellectual processes aptaoed by, for example, statistical and computaition
linguistics techniques. Automated classificatioriexftual documents has been a challenging research
issue for several decades. Its relevance is ragidiwing with the advancement of the World Wide
Web. Due to high costs of human-based subject ifitzg®on and the ever-increasing number of
documents, there is a danger that recognized dlgeadf bibliographic systems (Svenonius 2000, 20-
21) would be left behind; automated means couldigeoa solution to preserve them (ibid., 30).

Automated classification of text has many differapplications (cf. Sebastiani 2002 and Jain
et al. 1999); in this paper, the application contiexthat of information retrieval. In information
retrieval systems, e.g. library catalogues or intigand abstracting services, improved precisiah an
recall are achieved by controlled vocabularieshsas classification schemes and thesauri. The
specific aim of the classification algorithm is poovide a hierarchical browsing interface to the
document collection, through a classification schem



In our opinion, one can distinguish between threajom approaches to automated
classification: text categorization, document @usig, and document classification (cf. Golub
2006a).

In document clustering, both subject clusters ass#s into which documents are classified
and, to a limited degree, relationships betweemtaege automatically produced. Labeling the clusters
is a major research problem, with relationshipsveen them, such as those of equivalence, related-
term and hierarchical relationships, being evenemdifficult to automatically derive (Svenonius
2000, 168). In addition, “[a]Jutomatically-derivettugctures often result in heterogeneous criteria fo
category membership and can be difficult to unéact (Chen & Dumais 2000, 146). Also, clusters’
labels and relationships between them change asloeuments are added to the collection; unstable
class names and relationships are in informatitmex@l systems user-unfriendly, especially when
used for subject browsing.

Text categorization (machine learning) is the mestlespread approach to automated
classification of text. Here characteristics ofjsgbclasses, into which documents are to be ¢ledsi
are learnt from documents with human-assigned etaddowever, human-classified documents are
often unavailable in many subject areas, for d#ffeérdocument types or for different user groups. If
one would judge by the standard Reuters Corpusri®ld collection (RCV1) (Lewis et al. 2004),
some 8000 training and testing documents woulddseled per class. A related problem is that the
algorithm performs well on new documents only #ytrare similar enough to the training documents.
The issue of data collections was also pointecbgutang (1999) who showed how certain versions
of one and the same data collection had a stropgdton performance.

In document classification, matching is conductetiMeen a controlled vocabulary and text
of documents to be classified. A major advantagthisfapproach is that it does not require training
documents. If using a well-developed classificatimheme, it will also be suitable for subject
browsing in information retrieval systems. This Wbbe less the case with automatically-developed
classes and structures of document clustering orehgrown directories not created in compliance
with professional principles and standards . Agestn improved information retrieval, another
motivation to apply controlled vocabularies in antded classification is to re-use the intellectual
effort that has gone into creating such a contdolecabulary (cf. Svenonius 1997).

The importance of controlled vocabularies suchhesduri in automated classification has
been recognized in recent research. Bang et d@)6jAsed a thesaurus to improve performance of a
k-NN classifier and managed to improve precisionld$o, without degrading recall. Medelyan &
Witten (2006) showed how information from a subjgpecific thesaurus improved performance of
keyphrase extraction by more than 1,5 times inpFédgision, and recall.

The overall purpose of this experiment is to gasights into what degree a good controlled
vocabulary such as “Engineering Information thesauand classification scheme” (Ei thesaurus
1995) (in further text: Ei controlled vocabularyutd be used in automated classification of text,
using string-matching. Vocabulary control in thesasi achieved in several ways (Aitchinson et al.
2000). We believe that the following could be bénafin the process of automated classification:

e Terms in thesauri are usually noun phrases, whiglt@ntent words;

* Three main types of relationships are displayedl timesaurus:

1) equivalence (e.g. synonyms, lexical variants);

2) hierarchical (e.g. generic, whole-part, instandati@nships);

3) associative (terms that are closely related conmediptbut not hierarchically and are
not members of an equivalence set).

In automated classification, equivalence terms a@llow for discovering concepts and

not just terms expressing the concepts. Hierarotoedd provide additional context for

determining the correct meaning of a term; andosgdcassociative relationships;

* When a term has more than one meaning in the thesaeach meaning is indicated by
the addition of scope notes and definitions, prioxgjdadditional context for automated
classification.

In a previous paper (Golub 2006b) it was exploredvhat degree different types of Ei

thesaurus terms and Ei classification captionsiénfte performance of automated classification. In



short, the algorithm searched for terms from thedsitrolled vocabulary in engineering documents to
be classified (cf. 2.1). The majority of classeseM®und when using all the types of terms: preférr
terms, their synonyms, related, broader, narroemnd and captions, in combination with a stemmer:
recall was 73%. The remaining 27% of classes wetefaund because the words in the term list
designating the classes did not exist in the té#t@documents to be classified. No weightinguir ¢
offs were applied in the experiment. Apart fromwhg that all those types of terms should be used
for a term list in order to achieve best recallyits also indicated that higher weights could ermyi

to preferred terms (from the thesaurus), captitmosn(the classification scheme) and synonyms (from
the thesaurus), as those three types of termsegidijhest precision.

The aim of this experiment is to improve the clasaiion algorithm based on string-
matching between the Ei controlled vocabulary andireeering documents to be classified. We
especially wanted to do the following:

1) Achieve precision levels similar to recall achieved a previous experiment (Golub
2006b,964) by applying different weights and cutsof

2) Increase levels of recall to more than those aeldiem a previous experiment (ibid.) by
adding new terms extracted using natural languageepsing methods such as multi-word
morpho-syntactic analysis and synonym extraction.

The paper is structured as follows: the next sectfd Methodology) describes the applied
string-matching classification algorithm, data eotlon and the evaluation methodology. The third
section (3 Improving the string-matching algorithdescribes methods for enhancement of the string-
matching algorithm, including the enrichment witltamatically extracted terms. In fourth section, (4
Results) analyzes and discusses the results. Majarlusions and implications for further research
are presented in the fifth section (5 Conclusion).

2 Methodology

2.1 String-matching algorithm

This section describes the classification algoritisad in the experiment. It is based on searching f
terms from the Ei controlled vocabulary, in theldief engineering, in text of documents to be
classified (also in the field of engineering). TBecontrolled vocabulary consists of two parts: a
thesaurus of engineering terms, and a hierarchlaskification scheme of engineering topics. These
two controlled vocabulary types have each traddilgrhad distinct functions: the thesaurus has been
used to describe a document with as many contrdfleths as possible, while the classification
scheme has been used to group similar documenéthergto the purpose of shelving them and
allowing systematic browsing. The aim of the altfori was to classify documents into classes of the
Ei classification scheme in order to provide a lsing interface to the document collection. A major
advantage of Ei is that thesaurus descriptors apgped to classes of the classification scheme.eThes
mappings have been human-derived and are an ihtpgra of the thesaurus. Compared with
captions alone, mapped thesaurus terms provide a richiadditvocabulary for every class: instead
of having only one term per class (there is onlg caption per class), in our experiment there were
on average 88 terms per class.

Pre-processing steps of Ei included normalizingeupgnd lower-case words. Upper-case
words were left in upper case in the term listuasag that they were acronyms; all other words
containing at least one lower-case letter were edad into lower case. The first major step in
designing the algorithm was to extract terms fronmi what we call a term list. It contained class
captions, thesaurus preferred terms, their synor{firasm), classes to which the terms and captions
map or denote (Class), and weight indicating hoprayriate the term is for the class to which it
maps or which it designates (Weight). Geograpmeates, all mapping to class 95, were excluded on
the grounds that they are not engineering-spedifie.term list was formed as an array of triplets:

Weight: Term (single word, Boolean term or phrase) = Class

1 A caption is a class number expressed in wordsjreEi classification scheme “Electric and Elecic
Instruments” is the caption for class “942.1".



Single-word terms were terms consisting of one wBablean terms were terms consisting of two or
more words that must all be present but in anyroaden any distance from each other. Boolean
terms in this form were not explicitly part of Ehut were created to our purpose. They were
considered to be those terms which in Ei contathedfollowing strings: “and” (word “and”), “vs.”
(short for “versus™), “,” (comma), “;” (semi-colorseparating different concepts in class names), “("
‘)" (parentheses, indicating the context of a hogm) “:” (colon, indicating a more specific
description of the previous term in a class nana@d “--" (double dash, indicating heading--
subheading relationship). These strings we replagigtd “@and” which indicated the Boolean
relation in the term. All other terms consistingtefo or more words were treated as phrases, i.e.
strings that need to be present in the documetiteirexact same order as in the term. Ei comprises a
large portion of composite terms (3474 in the tofad411 distinct terms in our experiment); as such
Ei provides a rich and as such provides a richmrdise vocabulary with the potential to reduce the
risks of false hits.

The following are two excerpts from the Ei clagsifion scheme and thesaurus, based on
which the excerpt from the term list (further bejasvcreated:

From the classification scheme: From the thesaurus:

931.2 Physical Properties of Gases, Liquids and Solids TM Amperometric sensors

. . UF Sensors--Amperometric measurements
942.1 Electric and Electronic Instruments MC 942.1

943.2 Mechanical Variables Measurements '-i-'M Angle measurement

UF Angular measurement

UF Mechanical variables measurement--Angles
BT Spatial variables measurement

RT Micrometers

MC 943.2

™ Anisotropy
NT Magnetic anisotropy
MC 931.2

All the different thesaurus terms as well as caygtioere added to the term list. Despite the featt th
choosing all types of thesaurus terms might legatecision losses, we decided to do just that dieior

to achieve maximum recall, as shown in a previapep (Golub 2006b). In the thesaurus, TM stands
for the preferred term, UF (“Used For”) for an egqient term, BT for broader term, RT for related
term, NT for narrower term; MC represents the nw@éss; sometimes there is also OC, which stands
for optional class, valid only in certain cases.itMand optional classes are classes from the Ei
classification scheme that have been human-deawedare an integral part of the thesaurus. Based
on the above excerpts, the following term list vablé created:

: physical properties of gases @and liquids @and solids = 931.2,
: electric @and electronic instruments = 942.1,

: mechanical variables measurements = 943.2,

: amperometric sensors = 942.1,

: sensors @and amperometric measurements = 942.1,
angle measurement = 943.2,

angular measurement = 943.2,

: mechanical variables measurement @and angles = 943.2,
: spatial variables measurement = 943.2,

: micrometers = 943.2,

: anisotropy = 931.2,

: magnetic anisotropy = 931.2,

PRPPPPPRPRPRPRER

The number at the beginning of each triplet is Weiggstimating the probability that the term of the
triplet designates the class; in this example geisto 1 as a baseline, and experiments withrdiite
weights are discussed later on.

The algorithm searches for strings from a givemthst in the document to be classified and
if the string (e.g. “magnetic anisotropy” from thbove list) is found, the class(es) assigned tb tha
string in the term list (“931.2” in our example)eaassigned to the document. One class can be
designated by many terms, and each time a terrousdf the corresponding weight (“1” in our
example) is added to a score for the class. Thesdor each class are summed up and classes with
scores above a certain cut-off (heuristically dedindiscussed later on) are selected as the fired o
for the document being classified.



The Ei classification scheme is hierarchical andscsis of six main classes divided into 38
finer classes which are further subdivided into X82sses. These are subdivided even further,
resulting in some 800 individual classes in a fereel hierarchy. For this experiment one of the six
main classes was selected, together with all itsclagses: class 9, “Engineering, General”. The
reason for choosing this class was that it covesth lmatural sciences such as physics and
mathematics, and social sciences fields such amesring profession and management. The
literature of the latter tends to contain more pelyic words than the former, and as such presents a
more complex challenge for automated classificatiithin the 9 class, there are 99 subclasses.
However, for seven of them the number of documémts database based on which the data
collection was created (see 2.2 Data Collectionjewew, less than 100. Thus those seven classes
were excluded from the experiment altogether. Thesze: 9 (Engineering, General), 902
(Engineering Graphics; Engineering Standards; Pajtedl (Engineering Management), 914 (Safety
Engineering), 92 (Engineering Mathematics), 93 {Begring Physics), and 94 (Instruments and
Measurement). Of the remaining 92 classes, thekdiibn at the five different hierarchical levéts
as follows: at the fifth hierarchical level 11 das, at the fourtb7, at the third 14, and at the second
hierarchical level 5.

2.2 Data collection

The data collection comprised 35166 bibliograpleicord$ from the Compendex database (2006).
The records were selected by simply retrievingttpe100 or more of them upon entering the class
number. A minimum of 100 records per class wererdoaded at several different points in time
during the years of 2005 and 2006.

For each record there was at least one of thel82ted classes that were human-assigned (cf.
2.1). A subset of this collection was created tdude only those records where main clagas class
9; this subset contained 19237 documents.

From each bibliographic record (in further text.cdment) the following elements were
extracted: an identification number, title, abstraod human-assigned classes (“Ei classification
codes”). Thesaurus descriptors (in Compendex caliedontrolled terms”) were not extracted since
the purpose of this experiment was to compare aatioally assigned classes (and not descriptors)
against the human-assigned ones. Below is an erashpihe document:

Identification number: 03337590709

Title: The concept of relevance in IR

Abstract: This article introduces the concept of relevance as viewed and applied in the context of IR evaluation, by presenting

an overview of the multidimensional and dynamic nature of the concept. The literature on relevance reveals how the relevance
concept, especially in regard to the multidimensionality of relevance, is many faceted, and does not just refer to the various
relevance criteria users may apply in the process of judging relevance of retrieved information objects. From our point of view,

the multidimensionality of relevance explains why some will argue that no consensus has been reached on the relevance
concept. Thus, the objective of this article is to present an overview of the many different views and ways by which the concept

of relevance is used - leading to a consistent and compatible understanding of the concept. In addition, special attention is paid

to the type of situational relevance. Many researchers perceive situational relevance as the most realistic type of user
relevance, and therefore situational relevance is discussed with reference to its potential dynamic nature, and as a requirement

for interactive information retrieval (IIR) evaluation.

Ei classification codes: 903.3 Information Retrieval & Use, 723.5 Computer Applications, 921 Applied Mathematics

Automated classification was based on title andrabs and automatically assigned classes were
compared against human-assigned ones (Ei claggificaodes in the example). On average, 2.2

classes per document were human-assigned, ramgmgl to 1.
2.3 Evaluation methodology

2.3.1 Evaluation Challenge

According to standard “Documentation — Methods éxamining documents, determining their
subjects, and selecting index terms” (InternatioBafjanization for Standardization 1985: 5963-

2 Compendex being a commercial database, the dégéatiamn cannot be made available to others, beit th
authors are willing to provide documents’ idengfion numbers on request.
% The first one listed in the “Ei classificationdzs” field of the record.



1985), human-based subject indexing is a processiving three steps: 1) determining subject
content of a document, 2) conceptual analysis twddewhich aspects of the content should be
represented, and 3) translation of those concepaspects into a controlled vocabulary. These steps
in particular the second one, are based on a @pditifary’s policy in respect to its document
collections and user groups. Thus, when evaluatinigmatically assigned classes against the human-
assigned ones, it is important to know the humaedandexing policies. Unfortunately, we were
unable to obtain indexing policies applied in ttenfpendex database. What we could derive from the
data collection was the number of human-assignedses per document, which were used in
evaluation. However, without a thorough qualitatevealysis of automatically assigned classes one
cannot be sure whether, for example, the classegnasl by the algorithm, but not human-assigned,
are actually wrong, or if they were left out by tale or because of the indexing policy. A further
issue is that we did not know whether the artitlad been human-classified based on their full-text
or/and abstracts; we had, however, only abstracts.

Another problem to consider when evaluating autecha&tassification is the fact that certain
subjects are erroneously assigned. When indexinmahs make errors such as those related to
exhaustivity policy (too many or too few terms beeoassigned), specificity of indexing (which
usually means that humans do not assign the mestfigpterm), they may omit important terms, or
assign an obviously incorrect term (Lancaster 2@®387). In addition, it has been reported that
different people, whether users or professionajemtitindexers, would assign different subject terms
or classes to the same document. Studies on anterintra-indexer consistency report generally low
indexer consistency (Olson & Boll 2001, 99-101).rk&y (1984) reviewed 57 indexer consistency
studies and reported that consistency levels rimoge 4% to 84%, with only 18 studies showing over
50% consistency. There are two main factors thaide affect it:

1) Higher exhaustivity and specificity of subject inae both lead to lower consistency, i.e.
indexers choose the same first term for the majbjest of the document, but the consistency
decreases as they choose more classes or terms;

2) The bigger the vocabulary, or, the more choicesiridexers have, the less likely they will
choose the same classes or terms (Olson & Boll, Z0®101).

Both of these two factors were present in our arpent:

1) High exhaustivity: on average, 2.2 classes per mect had been human-assigned, ranging
from 10 to 1.

2) Ei controlled vocabulary is rather big (we chose @&sses) and deep (five hierarchical
levels), allowing many different choices.

Today evaluation in automated classification experits is mostly conducted under
controlled conditions, ignoring the above-discusisstdies. As Sebastiani (2002, 32) puts it, “...the
evaluation of document classifiers is typically dooted experimentally, rather than analyticallyeTh
reason is that... we would need a formal specificatibthe problem that the system is trying to solve
(e.g. with respect to what correctness and compdsteare defined), and the central notion... that of
membership of a document in a category is, due t$0 subjective character, inherently
nonformalizable.” Because of the fact that methoggifor such experiments has yet to be developed,
as well as limited resources, we followed the comrapproach to evaluation and started from the
assumption that human-assigned classes in the clataction were correct, and compared
automatically assigned classes against them.

2.3.2 Evaluation measures

The subset of the Ei controlled vocabulary we usmdprised 92 classes that are all topically related
to each other. The topical relatedness is expregsemimbers representing the classes: the more
initial digits any two classes have in common, there related they are. For example, 933.1.2 for
“Crystal Growth” is closely related to 933.1 forr{Gtalline Solids”, both of which belong to 933 for
“Solid State Physics”, and finally to 93 for “Engiering Physics”. Each digit represents one
hierarchical level: class 933.1.2 is at the fiftlerhrchical level, 933.1 at the fourth etc. Thus,
comparing two classes at only first few digits €fateferred to as partial matching) instead ottzl

five also makes sense. Still, unless specificaied, the evaluation in this experiment was coretlict
based on all the five different levels (later rederto as complete matching), i.e. an automatically



assigned class was considered correct only ifsatligits were the same as a human-assigned diass f
the same document.

Evaluation measures used were the standard micexgae and macroaveraged precision,
recall and F1 (Sebastiani 2002, 40-41), for bothmete and partial matching:

Precision = correctly automatically assigned clagsdl automatically assigned classes
Recall = correctly automatically assigned classdshuman-assigned classes
F1 = 2*Precision*Recall / (Precision + Recall)

In macroaveraging the results are first calculddedach class, and then summed and divided by the
number of classes. In microaveraging the resultgéah part of every equation are summed up first
(e.g. all correctly automatically assigned classesadded together, all automatically assignedetas
are added together), and then the “aggregated’esalre used in one equation. Equations for
macroaveraged and microaveraged precision are geiem:

Precisiomacroaveraged SUM Of precision values for each class / nurobatfl classes

Precisiomicroaveraged= SUM Of correct automated assignments for eass ¢l
sum of all autaethassignments for each class

In microaveraging more value is given to classas ltve a lot of instances of automatically assigne
classes and the majority of them are correct, whilenacroaveraging the same weight is given to
each class, no matter if there are many or fewnaatically assigned instances of it. The differences
between macroaveraged and microaveraged valuebectarge, but whether one is better than the
other has not been agreed upon (Sebastiani 200224 Thus, in this experiment, it is the mean
macroaveraged and microaveraged F1 that is mossig.u

In order to examine different aspects of the autethalassification performance, several
other factors were also taken into consideration:

* Whether the (human-assigned) main class is found,;

* The number of documents that got automaticallygassl at least one class;

* Whether the class with highest score was the sarntfgeshuman-assigned main class;

* The distribution of automatically versus human-gised classes; and,

* The average number of classes assigned to eacimdotuThere were 2.2 human-
assigned classes per document, and our aim washieva similar. In the context of
hierarchical browsing based on a classificationestd having too many classes
assigned to a document would place one documemmaanany different places,
which would create the opposite effect of the omdipurpose of a classification
scheme, that of grouping similar documents together

3 Improving the algorithm

The major aim of the experiment was to improvedlgerithm that was previously experimented with
in Golub 2006b, where highest (microaveraged) fewals 73% when all types of terms were
included in the term list. In that experiment neithveights nor cut-offs were experimented with, so
all the classes that were found for a document asseyned to it. Here we wanted to achieve as high
as possible precision levels by use of term wenghtind class cut-offs. In order to also allow for
better recall, the basic term list was enrichedhwiew terms extracted from documents in the
Compendex database, using multi-word morpho-syistaogalysis and synonym acquisition.

3.1 Term weights

The aim of this part of the experiment was to ashias high as possible precision levels by use of
weighting and cut-offs. As shown in Golub 2006b types of terms need to be used in the term list
for maximum recall. Thus, all the different typdgerms and their mappings to classes were merged
into the final term list. This resulted in a numhmrduplicate cases which were dealt with in the

following manner:



» If one term mapping to the same class was a camipreferred term, and a synonym
at the same time, the highest preference was, lasdteir performance (see Table
4), given to captions, followed by preferred terrf@lowed by synonyms, while
others were removed from the list;

» If one term mapping to both optional class (OC) aran class (MC) was a caption,
a preferred term, and a synonym at the same timehighest preference was, based
on their performance (see Table 2), given to captidollowed by preferred terms,
followed by synonyms, while others were removedrfitbe list;

» If one thesaurus term of the same type mappedttodyional class (OC) and main
class (MC), the one that mapped to the optionascilaas removed (based on their
performance, see Table 2).

The final term list consisted of 8099 terms, outwbiich 92 were captions (all mapped to main class
(MC)), 668 were broader terms, 729 narrower, 1683epred, 3224 related, and 1733 were synonym
terms. This big number of terms that have been huma@pped to classes indicates potential
usefulness of such a controlled vocabulary in dngtmatching algorithm for automated
classification.

In order to systematically vary different paramstehe following 14 weighting schemes

evolved:

1)

wl: All terms in the term list were given the samaghe 1. This term list served as a baseline.

2) w134 Different term types were given different weighssngle-word terms 1, phrases 3, and

3)

4)

Boolean terms 4.

These weights were heuristically derived in a sagaexperiment (Table 1). Three different
term lists were created, each containing only shwgbrd terms, phrases or Boolean terms.
Weight 1 was assigned to all of them. The documerte classified using these three terms lists
and their performance was compared for precision.

Table 1. Single, phrase and Boolean term lists artleir performance as a basis for weights.

| single Phrase Boolean
Avg. precision (%) 8 26 33
Derived weight 1 3 4

Avg. precision (%) is mean microaveraged and maen@ged precision. Derived weights were
based on dividing precision values (Avg. precisioyp}the lowest precision value (in this case 8).

wl2 Terms mapping to a main class (MC) were givergive®2, and those mapping to an optional
class (OC) were given weight 1.

These weights were heuristically derived in a sajgaexperiment (Table 2). Two different
term lists were created, one containing only theses that map to a main class, and another one
containing only those terms that map to an optiateds. Weight 1 was assigned to all of them.
The documents were classified using these two tdistssand their performance was compared
for precision.

Table 2. Main code and optional code term lists antheir performance as a basis for weights.

|  wmc ocC
Avg. precision (%) 13 6
Derived weight 2 1

Avg. precision (%) is mean microaveraged and maen@ged precision. Derived weights were
based on dividing precision values (Avg. precisioy}the lowest precision value (in this case 6).

w134 12 This list was a combination of the two precedists. Weights for term type 1, 3, and 4
for single, phrase or Boolean term were multipligdhe weight for the type of class to which the
term mapped — 1 or 2 for optional or main class.



5) wOrig: As used in the original term weighting schemewthe string-matching algorithm based
on Ei was first applied (Koch & Ardd 2000). Theseights were intuitively derived. They
combined types of terms depending if it were alstwgprd term, Boolean or phrase, and whether
the assigned class was main (MC) or optional (OC).

Table 3. Weights in the original algorithm.

| Phrase Boolean Single
ocC 4 2 1
MC 8 3 2

6) w1234 With weights for different term relationships agaptions as experimented with in Golub
2006b (captions are from the classification scheatt@thers are thesaurus terms).

Table 4. Different types of thesaurus terms captiomand their performance as a basis for weights.

| Broader Captions Narrower Preferred Related Synonyms
Avg. precision (%) 10 43 25 39 10 35
Derived weight 1 4 2 4 1 3

7) w134 _1234This list was a combination of two previous ljstd 34 and w1234. Weights for term
type 1, 3, and 4 for single, phrase or Boolean teere multiplied by the weight for the type of
term relationships as given in Table 4.

8) wl34 12 1234This list was a combination of two previous ljstsl 34 12 and w1234. Weights
for term type 1, 3, and 4 for single, phrase orlBao term were multiplied by the weight for the
type of class to which the term mapped — 1 or Dfgronal or main class, and by the weight for
the type of term relationships as given in Table 4.

9) wTf10: In this list weights were based on the humbeworfds the term consisted of, and of the
number of times each of its words occurred in oteems (cf.tf-idf, term frequency — inverse
document frequency, Salton & McGill 1983, e.g. 85 If f were the frequency with which a
word w from the termt occurred in other terms, tertrconsisting ofh words, then the weight
weight of that term was calculated as follows:

weight = log(n) - ( 14y + 1 +...+ Uhyn)

Log was applied in order to reduce the impact ohpeetern, i.e. to avoid getting overly high
weights for terms consisting of several sparse wohd order to get integers as weights, the
weights were multiplied by 10, rounded and incrddsel to avoid zeros.

10) wTfl0Boolean As in wTf10, with all the phrases modified intm@ean terms. This list was
created in order to study the influence of phrasesBoolean terms on precision and recall.

11) wTfl0Phrases As in wTf10, with all the Boolean terms modifi@to phrases. This list was
created in order to study the influence of phrasesBoolean terms on precision and recall.

12)wTfl0_12 As in wTf10, with those weights multiplied by theeight for the type of class to
which the term maps — 1 or 2 for optional or mdass. The multiplication was done before the
rounding.

13)wTfl0_1234 As in wTfl0, with those weights multiplied by theeight for the type of
relationship (Table 4). The multiplication was ddrefore the rounding.

14)wTf10_12_ 1234 As in wTf10_12, with those weights multiplied bye weight for the type of
relationship (Table 4). The multiplication was ddredore the rounding.

3.1.1 Stop-word list and stemming

Although the terms and captions in the Ei conteblecabulary are usually noun phrases which are
good content words, they can also contain wordshvhre frequently used in many contexts and as
such are not very indicative of any document’s dalily (e.g. the word “general” in the Ei class

caption “Engineering, General”). Thus, a stop-whstlwas used. It contained 429 such words, and
was taken from Onix text retrieval toolkit (2006pr stemming, the Porter’s algorithm (Porter 1980)



was used. The stop-word list was applied to then tigsts, and stemming to the term lists as well as
documents.

3.2 Cut-offs

In a previous experiment (Golub 2006b) cut-offs evaot used — instead, all the classes that were
found for a document were assigned to it. In thatext of hierarchical browsing based on a
classification scheme, having too many classeg@adito a document would place one document to
many different places, which would create the ofipogffect of the original purpose of a
classification scheme (grouping similar documentgether). In the data collection, there were 2.2
human-assigned classes per document, and the a@atarhated classification was to achieve similar.
The effect of several different cut-offs was inigsted:

1) All automatically derived classes are assignednas 6nes (no cut-off).

2) In order to assign a certain class as final, treesof that class had to have a minimum
percentage of the sum of all the classes’ scorigferént values for the minimum percentage
were tested: 1, 5, 10, 15 and 20, as well as sthaz(see section 4 Results).

3) The second type of cut-off in combination with tlwée that if there were no class with the
required score, the one with the highest score dvbelassigned.

4) In order to follow the subject classification piipple of always assigning the most specific
class possible, the principle of score propagatizas introduced. The principle was
implemented so that the scores for classes at déégrarchical levels were a sum of their
own score together with scores of classes at ugipearchical levels if such were assigned.

3.3 Enriching the term list with new terms

In the previous experiment (Golub 2006b), highestieved recall was 73% (microaveraged), when
all types of terms were included in the term listorder to further improve recall, the basic tdish
was enriched with new terms. These terms were arttafrom bibliographic records of the
Compendex database, using multi-word morpho-syiotaoglysis and synonym acquisition, based on
the existing preferred and synonymous terms (asdghee best precision results).

Multi-word morpho-syntactic analysis was conductsing a parser FASTER (Jacquemin
1996) which analyses raw technical texts and, basedouilt-in meta-rules, detects morpho-syntactic
variants. The parser exploits morphological (deéroreal and inflectional) information as given byeth
database CELEX (Baayen et al. 1995). Morphologaradlysis was used to identify derivational
variants, such as:

effect of gravity: gravitational effect

architectural design: design of the proposed architecture

supersonic flow: subsonic flow
structural analysis: analysis of the structure

Syntactical analysis was used to:
a) insert word inside a term, such as:
flow measurement: flow discharge measurements
distribution of good: distribution of the finished goods

construction equipment: construction related equipment
intelligent distributed control: intelligent control

b) permute components of a term, such as:

control of the inventory: inventory control
flow control: control of flow
development of a flexible software: software development

C) add a coordinated component to a term, such as:

project schedule and management: project management

control system: control and navigation system

Synonyms were acquired through a rule-based sySgnoTerm (Hamon & Nazarenko
2001) which infers synonymy relations between caxpgerms by employing semantic information
extracted from lexical resources. First the documevere preprocessed and tagged with part-of-
speech information and lemmatized. Then terms wiaetified through the YaTeA term extractor
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(Aubin & Hamon 2006). The semantic information pd®d by the database WordNet (Fellbaum
1998; WordNet Search 2007) was used as a bootstrapquire synonym terms of the basic terms.
The synonymy of the complex candidate terms wasnasd to be compositional, i.e. two terms were
considered synonymous if their components wereticiEror synonymous (e.g. building components:
construction components, building components: econgbn elements).

Although verification by a subject expert is desieafor all automatically derived terms, due
to limited resources only the extracted synonymeewerified. Checking the synonyms is also most
important since computing those leads to a biggearamtic shift than morphological and syntactical
operations do. The verification was conducted Isylgject expert, a fifth-year student of engineering
physics. Suggested synonym terms were display#teinser interface of SynoTerm. The verification
was nhot strict: derived terms were kept if they aveemantically related to the basic term. Thus,
hyperonym (generic/specific) or meronym (part/whdkrms were also accepted as synonyms. The
expert spent 10 hours validating the derived ter@sthe 292 automatically acquired synonyms, 168
(57,5%) were validated and used in the experiment.

4 Results
4.1 Weights and cut-offs

Based on each of the 14 term lists, the classificatlgorithm was run on the data collection of @51
documents (see 2.2). As described earlier (2.%@yeral aspects were evaluated and different
evaluation measures were used; thus, for eachligrrthe following types of results were obtained:
1) min 1: if no classes were assigned because their fimaesavere below the pre-defined cut-
off value (described in 3.2), the class with thghleist score was assigned,;
2) cut-off: the applied cut-off value;
3) min 1 correct: number of documents that were assigned at least@nect class;
4) min 1 auto: number of documents that were assigned at leastlasg;
5) avg auto/doc: average number of classes that were assigned gmrment, based on
documents that were assigned at least one class;
6) macroa P:macroaveraged precision;
7) macroa R: macroaveraged recall;
8) macroa F1:macroaveraged F1,;
9) microa P: microaveraged precision;
10) microa R: microaveraged recall;
11) microa F1: microaveraged F1,;
12) mean Fl1s:arithmetic mean of macroaveraged and microaverkgedlues.

Table 5 shows results for list w134 12 1234 whies ltcombined weights for term type
(single, phrase or Boolean), type of class, ane tgpterm relationships. In order to provide an
example of how results for every other term listravanalyzed, we discuss results for this list in
detail.

Best recall is achieved when no cut-off is appl@84, but in that case on average 17 classes
are assigned per document, which is too many inpaoison to 2.2 that are human-assigned. This
setting is appropriate in applications such asdedwcrawling where documents are ranked based on
weights. When the most appropriate number of ctagseour purpose is assigned (2.63), recall is
0.22. Best precision is gained when cut-off valgehighest (20): 0.37 macroaveraged, 0.28
microaveraged. In that setting the average numbelasses assigned per document is 1.5. Best mean
macroaveraged and microaveraged F1 is 0.22, wheoffsuare 10 or 15.

Best precision results are gained when cut-ofiighést, best recall when there is no cut-off.
More than twice as many documents are assignedatartasses when no cut-off is used. All these
results suggest that weights are not very appnaprigtill, when looking at the F1 values, in
comparison to the baseline (first column), an improent of six percent is achieved when using the
w134 12 1234 term list.

Table 5. Results for term list w134 12 1234,
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min 1 no yes
cut-off 0 1 5 10 15 20 1 5 10 15 20
min 1 correct| 24036 | 21403 17403 14339 12320 10278 | 21403 17403 14425 12774 11606
min 1 auto| 34053 | 34053 34050 33270 30433 26587 | 34053 34053 34053 34053 34053
avg auto/doc| 16.65 | 9.77 5.02 2.69 191 1.47 9.46 4.86 2.55 1.65 111
macroa P| 0.11 0.14 0.18 0.25 0.32 0.37 0.14 0.18 0.25 0.31 0.35
macroa R| 0.54 0.42 0.29 0.21 0.17 0.14 0.42 0.29 0.22 0.18 0.15
macroa F1| 0.19 0.21 0.22 0.23 0.22 0.20 0.21 0.22 0.23 0.23 0.21
microa P| 0.07 0.10 0.13 0.19 0.24 0.28 0.10 0.13 0.19 0.23 0.27
microa R| 0.54 0.43 0.30 0.22 0.18 0.14 0.43 0.30 0.22 0.18 0.16
microa F1| 0.13 0.16 0.19 0.20 0.20 0.19 0.16 0.18 0.20 0.21 0.20
mean F1s| 0.16 0.19 0.20 0.22 0.21 0.19 0.19 0.20 0.22 0.22 0.21

The same experiment was run on all the other tets1 When looking at mean F1 values, the
differences between the term lists are not larigan tfour percent. Performance of the differenslist
measured in precision and recall is also similaire€ lists that perform best in terms of mean [El ar
w1234, wl34 1234 and w134 12 1234 - all of themedbasn weights for different term
relationships. The biggest number of correct cesséound with the wTf10Boolean list in which all
phrases were converted into Boolean terms.

When using cut-offs, two sets of experiments wemnadacted: one with assigning at least the
class with highest score, and the other following threshold calculation only. Because the former
results in more documents with assigned correstsels in further experiments the rule to assign at
least the class with highest score is applied.

4.1.1 Stop-words removal and stemming

Next, the influence of stop-words removal and stémgmvas tested (as described in 3.1.1). For this
experiment three lists that performed best in ttevipus one were chosen: w1234, w134 1234 and
w134 12 1234. Every list was run against stop-woetlsoved, stemming, and both the stop-words
removed and stemming, each in combination withedéfifit cut-off values: 5, 10 and 15.

Improvements when using either stemming or stopdaemoval or both are achieved in
majority of cases up to two percent. There is alsbight increase in the number of correctly found
classes without finding more incorrect classes. differences between the three term lists measured
in mean F1 are minor — one or two percent. The teest list is w134 12 1234 used in combination
with stemming and stop-words removal and cut-off-1iflest mean F1 is 0.24. For this list more cut-
offs were experimented with for better results;thkie of 9 proved to perform best but better amly
a third decimal digit than that of 10.

4.1.2 Individual classes, partial matching, distribution of classes

We further wanted to investigate performance atléhel of individual classes, partial matching as
well as how automatically assigned classes aragliistd in comparison to human-assigned ones. We
used the best-performing w134_12 1234 term list setting (applying stemming and stop-words
removal, cut-off 9).

It was shown that certain classes perform muchebéktan the average. Performance of
different classes varies quite a lot. For examjple three performing classes as measured in poacisi
are different from top three classes for recalFbr

» Top three in precision:

— Cellular Manufacturing (913.4.3), precision 0.98;
— Electronic Structure of Solids (933.3), precisiod7) and,
- Information Retrieval and Use (903.3), precisia8i20.
e Top three in recall:
— Amorphous Solids (933.2), recall 0.61;
— Crystal Growth (933.1.2), recall 0.52; and,
— Manufacturing (913.4), recall 0.50.
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 Topthreein F1:
— Crystal Growth (933.1.2), F1 0.45;
— Amorphous Solids (933.2), F1 0.44; and,
— Optical Variables Measurement (941.1), F1 0.40.

As expected, the algorithm performs better wherluawi®mn is based on partial matching
between automatically and human-assigned classese@n from Table 6, at the second hierarchical
level F1 is up to 0.66 and at third 0.59. At theaswl hierarchical level the best F1 is achieved by
classes “Engineering mathematics” (representedubyber 92) and “General engineering” (90), both
of which have by far the smallest number of termsighating themt¢rms), while other three classes
have many more terms and similar performance medsarmean F1. At the third hierarchical level,
the class that performs best of all is 921 “Appliehthematics”, while the worst one is 943
“Mechanical and Miscellaneous Instruments”. In dosion, for the 14 classes at top three
hierarchical levels mean F1 is almost twice as gaoibr the complete matching, which implies that
our classification approach would suit better thisdermation systems in which fewer hierarchical
levels are needed, like the Intute subject gateavagngineering (Intute: Engineering 2007).

Table 6. Results for partial matching at the secahand third hierarchical levels, and number of terns
per each class.

General Management Maths Physics Instruments
90 91 92 93 94
F1 0.65 0.5 0.66 0.51 0.49
terms 679 1922 848 2902 1748

901 [ 902 | 903 | 911|912 ]913]914]921 |922 ] 931 | 932|933 | 941|942 | 943 | 944
F1)0.35]0.27]0.53]0.32]0.36]0.26] 0.29] 0.59] 0.33] 0.44]0.33]0.48]0.28] 0.36]| 0.2 | 0.44
terms| 275] 241 | 163 | 237 | 596 | 393 | 696 | 628 | 220 1648| 801 | 453 | 422 | 373 | 604 | 349

The variations in performance between individuasses for both complete and partial
matching are quite big, but at this stage it i§idift to say why. Further research is needed ar
what the factors contributing to performance are.

Using the same best setting achieved so far, gwitim was also evaluated for distribution
of automatically assigned classes in comparisahabof the human-assigned ones. The comparison
was based on how often two classes get assignetheygvhen using the algorithm in comparison to
when they get human-assigned. Figure 1 shows d¢lggidncy distribution of assigned class pairs. The
x-coordinate presents human-assigned class paitsreat by descending frequency. One point
represents one class pair: e.g. the pair of cla@$2<® and 903 occurs most frequently in human-
based classification (48 times, as marked on theoydinate) and is represented by point 1 on the x-
coordinate; point 500 on the x-coordinate repres#mt 913.5 and 911 pair that occurs 3 times, as
marked on the y-coordinate. Thus, the smoothest (HHuman-assigned) represents the human-
assigned classes. The minimum of 2538 pairs oSetashat both the algorithm and humans have
produced are shown.

A correlation of 0.38 exists between the humangaesl classes and automatically assigned
classes (Automated). However, for the 100 mostuket) pairs, the correlation drops to 0.21. In the
top 10 most frequent pairs of classes, there i®verlap at all. In conclusion, the distribution of
human-assigned and automatically assigned classe®rie correlated when looking at all pairs of
classes occurring together, but less so for meeuintly occurring pairs.
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Figure 1. Frequency distribution of assigned pair®f classes (2538 pairs).

4.1.3 Score propagation and main classes

A relevant subject classification principle is tavays assign the most specific class availables Thi
principle provided us with a basis for the so-ahl&sore propagation, in which scores of classes at
narrower (more specific) hierarchical levels wereréased by scores assigned to their broader slasse
(later referred to as “propagated down”). In anpitum, this was slightly varied, so that the broade
classes from which scores were propagated to tiehower classes were removed (“propagated
down, broader removed”).

These types of score propagation were tested erbéist performing term list and setting
(w134_12 1234 with stemming and stop-words remowalfomplete matching, “propagated down”
performs best. However, it is slightly worse thanew not using score propagation at all. In partial
matching, both “propagated down” and “propagatedrddroader removed” perform slightly better
than the original on the first two or three hiehacal levels, and slightly worse on the fourth difith
ones. These not-so-good results with score projpegean be partially explained by the fact that the
term list contained both broader and narrower temiisch was done in order to achieve best recall
(Golub 2006Db).

We further analyzed the degree to which the onet img@ortant concept of every document
is found by the algorithm. To this purpose, a stlo$d19153) documents was used which had the
human-assigned main class in class 9 (there isv@ie class per document). In complete matching
78% of main classes are found when no cut-offsappdied. When cut-offs are applied, 22% of main
classes are found. In partial matching, more mdasses are found at the second and third
hierarchical levels when using both types of squ@pagation, up to 59% and 38% respectively.
Thus, score propagation could be used in servarewtiich fewer hierarchical levels are needed)(
Intute 2007.

4.2 Enhancing the term list with new terms

In the previous experiment (Golub 2006b), highestieved recall was 73% (microaveraged), when
all types of terms were included in the term listorder to further improve recall, the basic tdish
was enriched with new terms. These terms were @grttafrom bibliographic records of the
Compendex database, using multi-word morpho-syiotaoalysis and synonym acquisition, based on
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the existing preferred and synonymous terms (ag ¢la@e best precision results). The number of
terms added to the term list was as follows:
1) Based on multi-word morpho-syntactic analysis:

» derivation: 705, out of which 93 adjective to noéB,noun to adjective, and 534 noun to

verb;

e permutation: 1373;

» coordination: 483;

* insertion: 742; and

e preposition change: 69.

2) Based on semantic variation (synonymy): 292 autmalat extracted, out of which 168 were
verified as correct by the subject expert.

In order to examine the influence of differenpayg of extracted terms, nine different term
lists were created and the classification was baseeach of them. It was shown that the number of
terms is not proportional to performance, e.g. pgation-based extraction comprises 1373 terms,
and, when stemming is applied, has performance esasummed in mean F1 of 0.02, whereas
coordination comprises 403 terms, with performaofc@07. These two cases can be explained by the
fact that permutation also implies variation basmd insertion and preposition change (e.qg.
“engineering for commercial window systems:” “systengineering”) which leads to bigger semantic
shift than the identification of term variant basedthe coordination. By combining all the extralcte
terms into one term list, the mean F1 is 0.14 wétemming is applied, and microaveraged recall is
0.11, which would imply that enriching the origingai-based term list with these newly extracted
terms should improve recall. In comparison to mssghined in Golub 2006b, where microaveraged
recall with stemming is 0.73, here the best readdl) microaveraged and with stemming, is 0.76.

The next step was to assign appropriate weighted newly extracted terms (Table 7). We
used the wl34 12 1234 term list, earlier showrettopm best. The result as measured in mean F1 is
the same as in the original, 0.24 (cut-off 10, stémg applied but not stop-word removal). The
difference is that recall and the number of cotyeassigned classes increases by 3%, but precision
decreases. Thus, depending on the final applicatoms extracted in this way could be added to the
term list or not.

Table 7. Performance of the w1 term list enrichedavith all automatically extracted terms.

all combined
stemming no yes no yes
stop-words out no no yes yes
min 1 correct 24479 29639 26039 30466
min 1 auto 34086 34966 34425 34987
avg auto/doc 16.79 28.61 18.06 29.68
macroa P 0.11 0.09 0.11 0.09
macroa R 0.54 0.71 0.55 0.72
macroa F1 0.19 0.16 0.18 0.15
microa P 0.07 0.06 0.07 0.06
microa R 0.55 0.73 0.59 0.76
macroa F1 0.13 0.11 0.13 0.10
mean F1 0.16 0.13 0.16 0.13

4.3 Terms analysis and shortened term lists

In the original term list there were 4411 distinetms. In the data collection, 53% of them were
found. The average length of the terms found wasden one and two words, while the longer ones
were less frequently found.

Of the terms found in the collection, based on %hem correct classes were always found,
while based on 43% of them incorrect classes wesaya found. For a sample of documents
containing terms that were shown to always yielbirect results, we had a male subject expert
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confirm whether the documents were in the wrongslaccording to his opinion. For 10 always-

incorrect terms with most frequent occurrences, dhigject expert looked at 30 randomly selected

abstracts containing those terms. Based on hismadts, it was shown that 24 out of those 30

documents were indeed incorrectly classified, haeta were also 6 which he deemed to be correct.

This is another indication of how problematic ittisevaluate subject classification in general, and

automated subject classification in particularh@ps one way would be to have a humber of subject

experts agree on all the possible subjects andeadafor every document in a test collection for
automated classification; another way could beuaiuate automated classification in context, by
end-users.

Based on the term analysis, three new term liste wetracted from the original one, and
tested for performance:

1) Containing only those terms that found classbgch were always correct (1308 terms). When
cut-off is between 5 and 10, macroaveraged pretisgaches 0.89, and microaveraged 0.99,
when neither stemming nor stop-words removal apiegh Stemming does not really improve
general performance because recall increasesitifdy by 0.03, while precision decreases by 0.2.
However, when using only those 1308 terms, onlydd%ocuments are classified. The best mean
F1, 0.15, is achieved when stemming and the stap-weonoval are used.

2) Containing those terms that found classes whickewerrect in more instances than they were
incorrect (1924 terms). This list yields best m&an0.38. This value is achieved when stemming
is used but no stop-words are removed. There &e &dSdocuments that are classified, with the
average number of classes 1.7. When stemming isused, precision levels are 0.75 for
microaveraged, and 0.79 for macroaveraged.

3) Containing all terms excluding those that foundssés which were always incorrect (4751
terms). The mean F1 is 0.25, when cut-off is 10 lapith stop-words removal and stemming are
used. The slight improvement in comparison to tligiral list is due to increase in precision.

5 Conclusion

In comparison to previous results (Golub 2006b) ¢lkperiment showed that the string-matching
classification algorithm could be enhanced in tikfving ways:

1) Weights: adding different weights to the term tiased on whether a term is single, phrase or
Boolean, which type of class it maps to, and typéeom relationship, improves precision,
mean F1, and relevance order of assigned classelstter being important for browsing;

2) Cut-offs: selecting as final classes those abowertain cut-off level improves precision and
F1. Assigning at least the class with highest soopFoves the number of documents that are
classified, and the number of documents that amectly classified;

3) Converting all phrases into Boolean terms incretisesiumber of correct classes;

4) Stemming, stop-words removal or the two in combamaimprove precision and recall;

5) Score propagation improves finding the main classha top three and two hierarchical
levels;

6) Enhancing the term list with new terms based onpimaisyntactic analysis and synonyms
acquisition improves recall;

7) Excluding terms that in most cases gave wrong etag&elds best performance in terms of
F1, where the improvement is due to higher pregikwgels; and

8) Best precision levels are achieved when only thesas that always gave correct classes are
used.

The best achieved recall is 76%, when the basio tist is enriched with new terms, and precision
79%, when only those terms previously shown todymdrrect classes in the majority of documents
are used. Performance of individual classes, medsdarprecision, is up to 98%. At third and second
hierarchical levels mean F1 reaches up to 60%.

These results are comparable to machine-learngayitims (cf. Sebastiani 2002), which are
considered to be the best ones but require traidregiments and are collection-dependent. Another
benefit of classifying documents into classes df-developed classification schemes is that they ar
suitable for subject browsing, unlike automaticalgveloped controlled vocabularies or home-grown
directories often used in document clustering amxtl¢ategorization (cf. Golub 2006a).
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The experiment has also shown that different vassaf the algorithm could be implemented
so that it best suits the application of the autically classified document collection. If the
application requires high recall, such as for edempfocused crawling, cut-offs would not be used.
Or, if one provides directory-style browsing intaé to a collection of automatically classified Web
pages, Web pages could be ranked by relevance basedights. In such a directory, one might want
to limit the number of Web pages per class, e gjgaonly the class with highest probability thasi
correct, as it is done in the “Thunderstone’s wiéé satalog” (About the Thunderstone web site
catalog 2007).

Most appropriate weights have still to be discoderéuture research should also involve
testing automated classification in the context@nfapplication and by end users, because of the
problem of aboutness. The applicability of thengttimatching approach mostly depends on the
controlled vocabulary itself. While Ei proved to keitable, which characteristics of controlled
vocabularies are beneficial for automated clas#ific needs to be further studied.
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